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These lectures were intended to provide a review and introduction to
perturbative quantum chromodynamics for participants, many of whom
were junior experimentalists, already familiar with the formalism describing
experiments like deep-inelastic scattering. These are therefore not a self-
contained introduction to the strong interactions at high energy. Rather,
they were an attempt to relate certain familiar central concepts in QCD,
such as asymptotic freedom and infrared safety, to underlying ideas from
quantum mechanics, and to provide the students with perspective on the
intellectual underpinnings of the many successes of the theory.
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1. Asymptotic freedom in QCD

We begin with a short portrait of quantum chromodynamics, the unbro-
ken, nonabelian gauge theory SU(3). QCD can be represented schematically
by [1]

LQCD =
∑

q

q̄ (i/∂ − gs/A + mq ) q −
1

4
F 2

µν [A] , (1)

with Fµν the nonabelian field strength. We can think of this expression
as an analogy to quantum electrodynamics, the sum of kinetic terms for
the quarks and gluons, supplemented by various local interactions. QCD
is the Yang-Mills gauge theory [2] of quarks (q) and gluons (A), in which
gluons are like photons with charge, so that the gluon field is a source
for itself. This nonlinearity, of course, is part of what makes QCD, and
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the strong interactions it describes, the source of such varied phenomena.
It was realized early on that the quarks of QCD provide just the right
currents to couple to electromagnetic and weak interactions, so that previous
results based on the analysis of those currents (“current algebra”) could be
taken over essentially unchanged [3]. In addition, this theory has just the
right kind of forces: the QCD charge is “antishielded”, growing larger with
increasing distances over which it is measured. This is its famous property
of asymptotic freedom [4].

Let us sketch how the asymptotic freedom of QCD is established. Work-
ing conceptually, imagine that we define the strong coupling, g(h̄/T ), as just
the amplitude for a quark to emit a gluon within a (Euclidean, for simplic-
ity) sphere of radius cT , with c the speed of light. This is illustrated in Fig.
1. In a sense, we send a gluon into the sphere wait a time of order T , and
see if it comes out accompanied by precisely one gluon. The amplitude for
this to happen is given by an infinite set of perturbative diagrams, each rep-
resenting a particular set of quantum mechanical histories. We show some
of the lowest order diagrams in Fig. 1.

g(h/T) = +

++

cT

+

Fig. 1. The running coupling defined by a sphere of radious cT .

Now the diagrams within the sphere are described by integrals that do
not converge, because there are simply too many states with one or two
additional gluons at very large energy. Nevertheless, with a bit of work, we
can compute the T -dependence of g(h̄/T ). With nf different (flavors of)
quarks, we find

αs(µ) ≡
g2
s(µ)

4π
=

αs(µ0)

1 + b0
αs(µ0)

4π ln
(

µ2

µ2
0

) ≡
4π

b0 ln
(

µ2 /Λ2
QCD

) , (2)

where we adopt the common notation b0 = 11 − 2nf/3, and where the
scale ΛQCD can be thought of as an integration constant. The value of this
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constant is set by any boundary condition for αs(µ0) at any scale µ0. In
other words, it is set by nature, once we learn to measure αs at a given
scale. This is asymptotic freedom, according to which αs(µ → ∞) → 0.
In QCD, the colors of virtual gluons “line up”, like neighboring magnets, a
feature that depends on both the spin and the self-interactions of the gluons
built into the Lagrangian. The smaller the sphere, the fewer the lined-up
magnets, and the weaker the interaction.

An essential result of asymptotic freedom in QCD is that radiation be-
comes weaker as momentum scales increase, or equivalently distances (like
cT above) decrease. In effect, near a color source, the coupling constant is
weak, a feature that leads to the famous approximate “scaling” observed
in deep-inelastic scattering, which we will describe below. Correspondingly,
far from a source, the coupling constant appears to grow, a feature that
is at least consistent with (although by no means ensuring) the observed
confinement of colored quarks and gluons.

In the years leading up to the discovery of QCD, a template [5, 6, 7] had
been developed to connect the behavior of the running coupling in any field
theory with what we now call parton distributions, which we will denote as
fi/H(x, µ), for partons i in hadron H [8]. Here, µ is a renormalization scale,
very much analogous to h̄/T above, and can be thought of as determining
the scale at which we probe hadron H to count these partons q. This probe-
scale dependence is encoded in sets of “anomalous dimensions”, which can
be computed as power series in the couplings,

γN =
αs

π
γ

(1)
N + . . . , (3)

where for QCD, we know that αs vanishes as µ increases. For moments of
the parton distributions, f̄(N) =

∫ 1
0 dxxN−1f(x), defined below, this means

f̄q/H(N,µ) ≡

∫ 1

0
dx = f̄q/H(N,µ0) exp

[

−
1

2

∫ µ2

µ2
0

dµ′2

µ′2
γ(N,αs(µ

′))

]

,(4)

and with αs(µ) = 4π/b0 ln(µ2/Λ2
QCD), we get:

f̄q/H(N,Q) = f̄q/H(N,Q0)

(

ln(Q2/Λ2
QCD)

ln(Q2
0/Λ

2
QCD)

)−2γ
(1)
N /b0

. (5)

Once the γN ’s were computed at one loop (and eventually all the way to
three loops [9]), it all worked. From the parton distributions, we can in-
vert the moments N and compute structure functions Fi(x,Q2) that de-
scribe deeply inelastic scattering in terms of the variables x = Q2/2p · q
and Q2. The data Fig. 2, shows exactly a pattern predicted by the explicit
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(a) (b)

Fig. 2. (a) Approximate scaling at moderate x. (b) Pronounced evolution for

smaller x. Data from the H1 experiment at HERA.

forms of the γN ’s: approximate scaling (Q-independence) at moderate x
and pronounced evolution (Q-dependence) for small x. Perfect “scaling”,
or Q-independence, for the structure functions would follow for vanishing
coupling. This corresponds to µ-independent parton distributions, as in the
parton model, which provided a successful description of the first moderate-
x data, in which Q-dependence seemed weak if not absent altogether [8].

As has been widely recognized, the asymptoic freedom of the QCD run-
ning coupling is a result of historic significance. This is as much because it
opens the door to new studies, as because it explained previously mysterious
features of nature. An tongue-in-cheek analogy that I like is

Scaling

QCD
=

Elliptical Orbits

Newtonian Gravity
. (6)

In its explanation of approximate scaling (and the violation, or “breaking”
of scaling), asymptotic freedom is a beginning, not an end. For Newto-
nian gravity, the immediate challenge to the inverse-square law was the
three-body problem (moon-sun-earth, for example). For QCD it is how to
study a theory in which the fundamental degrees of freedom are masked by
confinement. The ultimate goal might be expressed in a similar spirit as

Nuclear Physics

QCD
=

Chemistry

QED
. (7)

A short summary of questions we must ask in this context include: can we
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• Study the particles that give rise to electroweak currents (quarks)?

• Study the particles that provide the forces (gluons)?

• Expand in number of gluons (i.e., use perturbation theory)?

In QCD the fundamental quanta are confined, and (at least in the ab-
sence of extreme temperature and pressure) observed hadrons are bound
states. The scattering of bound states confronts us with the complex struc-
ture of these hadrons, and the strong forces that hold them together on
length scales comparable to 1/ΛQCD. A question that was raised often in
the early days of QCD was quite simply, “Does this make sense at all?”

2. Learning to Calculate with the Theory

Our first observation is that not all is hopeless. Certain quantities even
in a confining theory are quite “perturbation theory-friendly”.

2.1. Correlations and the S-matrix

The classic examples of quantities closely related to perturbation theory
are correlation functions between color-singlet currents at short distances,
schematically,

〈N |J(x)J(0) |N〉 = CN (xµ, αs(µ))

= CN (1, αs(1/x)) , (8)

in some state N . When N is the vacuum, the primary example is the total
e+e− annihilation cross section, for which J is the electroweak current. In
this case, the function C0 can be expressed as a power series in the coupling
evaluated at the momentum scale of inverse distance 1/x (here treated as
a simple scalar). Any such quantity, which depends on (one or more) short
distance scale is said to be infrared safe. When |N〉 is a nucleon state,
such matrix elements are related to deep-inelastic scattering. In this case,
the function CN is somewhat more complex, and the matrix element is
not itself infrared safe, but its dependence on the short length scale is still
computable, using the factorization formalism that we review below.

Calculating an S-matrix element in perturbative QCD, however, is pretty
hopeless,

〈B out|A in〉 = f (Q/µ,m/µ, αs(µ))

= f (1,m/Q,αs(Q))

= f (Q/m, 1, αs(m)) , (9)
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where A and B are hadronic states, Q is a hard scale, and m denotes
various soft scales in the theory, including the masses of light quarks, the
(perturbatively vanishing) mass of the gluon, and the strong-coupling scale
ΛQCD from Eq. (2). No matter what choice we take for the scale in the
running coupling, we encounter large ratios of the energy to fixed mass
scales. If S-matrix elements are not accessible, were we doomed to compute
only correlations of currents? The answer turns out to be “not quite”, and
here we can turn to another strand of the story.

2.2. Structure of final states: Cosmic rays to quark pairs

As it turns out, not being able to compute S-matrix elements is not the
same as begin forbidden to “look inside the final state”. In fact, as we now
know, it is possible to see in certain final states a direct portrait of quarks
and gluons in the form of “jets” of nearly collinear high-energy particles.
The story of the term “jets” actually begins before QCD, in fact at a time
when the Yang-Mills paper was still new. This is the tale of particle jets in
cosmic rays.

While tracing back some references, I was surprised to read in a paper
from 1957, that “The average transverse momentum resulting from our
measurements is pT =0.5 BeV/c for pions [a table] gives a summary of jet
events observed to date . . . ” [10]. Evidently, the jets of QCD did not by
themselves give rise to the term. What was being reported in this paper
was a spray of particles of high energy but limited transverse momentum (a
BeV is a GeV), observed in cosmic ray events, as seen in emulsions.

Somewhat over ten years after Ref. [10], accelerators had been developed
to study the annihilation of electrons and positrons into virtual photons,
which can then decay into anything that carries charge. In the meantime,
the quark model had been invented, and the quarks carry charge. So, what
was going to happen? If (as everyone suspected) we wouldn’t see the quarks
because of confinement, what would we see? Jets? In Physical Review,
Drell, Levy and Yan [11] took the step of extending the parton model from
deep-inelastic scattering to e+e− annihilation, and built into their model
the same limited transverse momentum that had been observed a decade
earlier in cosmic rays, describing the limitation as a cutoff: “Because of our
cutoff kmax ≪ |q| . . . The distribution of secondaries in the colliding ring
frame will look like two jets . . . ”

Now this was a real prediction for the nature of final states in e+e− → qq̄,
and following the spirit of the parton model, they suggested that the angular
distribution of the jets would follow the same angular distribution as the
quarks, 1+cos2 θ, with θ the angle to the beam axis. In this picture, partons
“fragment” into hadrons. Whether this would happen was a question to ask
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θ
?

θ

Fig. 3. Representation of the conjecture that there is a relation between quark pairs

and jets for e+e− annihilation.

of both nature and of QCD. Would the final states look like this?
In nature, they did, as shown by the analysis of Hanson et al. at SLAC

in 1975 [12]. And, in the fullness of time, that’s what happens in deep-
inelastic scattering, in e+e− annihilation and in hadron-hadron scattering.
Figures 4-6 show Nature’s answer to the question of whether jets exist.

 Q**2 = 21475   y = 0.55   M = 198 

Fig. 4. A jet in deep-inelastic scattering. Event recorded at the H1 experiment at

HERA.

2.3. How to calculate jet cross sections

Clearly, we can observe the jets, but we still have to ask whether we can
we calculate anything about them. Here we can hope to benefit from the
asymptotic freedom of QCD, but as we’ve seen, we have to be careful – the
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Fig. 5. A jet pair in e+e− annihilation. Event recorded at the Opal experiment at

LEP.
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Fig. 6. Jet pair at a hadron collider. Event recorded by the D0 experiment at

Fermilab.

S-matrix cannot be treated by short-distance analysis alone. If so, how can
we hope to compute cross sections?
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We can get insight into the challenges involved, and their possible solu-
tions, by recalling the related “infrared problem” of QED, and its “solution”.
As is often the case, the problem is related to asking the wrong question,
and the solution to identifying the right one.

In QED, typical exclusive cross sections have infrared divergent correc-
tions in perturbation theory, which show up as logarithmic dependence on
the (vanishing) mass of the photon. This happens as soon as we go to the
order e2 correction of a Born cross section, say in electron-electron scatter-
ing:

δσ(1)
ee→ee (Q,me, mγ → 0, αEM) ∼ αEM βAB(Q/me) ln

mγ

Q
, (10)

with βAB(Q/me) a function that is finite for vanishing photon mass, mγ .
Following the famous Bloch-Nordsieck analysis [13], however, we trace this
divergence to asking an unphysical question, the probability for one or more
charged particles to scatter, and in the process be accelerated, while emitting
no radiation at all. In effect, we are computing the probability of something
that never happens.

The classical theory demands radiation, and classical radiation requires
an essentially unlimited number of very low-energy photons. Rather than
count the number of photons (zero, one . . . ), Bloch and Nordsieck [13]
counseled that we introduce an energy resolution, ǫQ with ǫ ≪ 1, and then
sum over final states with arbitrary photon emission, as long as the total
energy comes in below the energy resolution. Experimentally, this is not a
choice, but a necessity, because our apparatus will always miss some photons
if they are soft enough. At first, however, it sounds complicated. How can
we sum over all soft photons? But this will not be necessary.

Following this procedure, suddenly the full order α correction with an
energy resolution becomes finite, the log of mγ , being replaced by a log of
ǫ. As long as α ln(1/ǫ) ≪ 1 (which is pretty easy), the correction is small,

δσ
(1)
ee→ee+X(ǫ) (Q,me, ǫQ, αEM) ∼ αEM βAB(Q/me) ln

1

ǫ
. (11)

The magic (and beauty) of this is that we don’t have to sum over an infinite
number of soft photons, even though this is the root cause of the problem!

Now let’s think about QED in the very high energy limit. On a closer
look, we find that the function βAB(Q/me) itself has a log of Q/me. Given
that the dominant term depends only on the ratio, we can as well trade the
high-energy limit for the double photon-electron zero mass limit. But in this
case, our energy resolution is not enough to produce finite cross sections.
If, however, we can solve this problem in QED, we may be able to solve
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it as well in high energy QCD, where the high energy limit also involves
logarithmic enhancements in ratios of momenta to all particle masses.

We wish to look for quantities that are capable of measurement, and
which nevertheless have no powers of ln(m/Q), only at worst (m/Q) ln(m/Q).
Such quantities become functions of only that single hard scale, and are
calculable as a power series in the coupling αs(µ), with µ = Q, without in-
troducing any large ratios when Q → ∞ with fixed masses, or equivalently
m → 0 at fixed Q. These are quantities for which asymptotic freedom can
be naturally applied, are are, in the terminology mentioned above, infrared
safe.

We’ve already seen that an energy resolution alone is not enough for
infrared safety. Progress can be made, however, by an analogy to the argu-
ment for an energy resolution, based on the unobservability of arbitrarily
soft photons. We can just as well say that two exactly collinear massless
particles cannot be distinguished from a single massless particle of the same
total momentum (and total quantum numbers), whether that momentum
is soft or not. That is, if p2 = 0 and p′2 = 0 and if pµ and p′µ are collinear,
then (p + p′)2 = 0 as well. So whether the combination is a single particle
or two particles is not easy to distinguish.

This approach works, and enables us to take the zero-mass limit for
all particles in QED and QCD. Roughly speaking, any cross section with
an energy and an angular resolution is infrared safe in e+e− annihilation.
If two particles are closer together in direction than some angle, δ, than
we treat them the same way as we do a single particle. We’ll also see that
hadron-hadron cross sections of this sort, while not themselves infrared safe,
contain an infrared safe factor that we can isolate.

The conditions for infrared safety may also be rephrased in a more gen-
eral form as follows. Any cross section that sums over all states that (1)
differ by the emission or aborption of soft particles, or (2) by the splitting or
recombination of exactly collinear particles, is infrared safe [14, 15, 16] (or
contains an infrared safe factor.) It is worth noting that to prove infrared
safety for jet cross sections requires an extension of the beautiful theorems
that apply to fully inclusive cross sections [17]. This involves a careful
reanalysis of perturbation theory, and is especially dependent on how the
gauge invariance of the theory manifests itself [16].

The most direct application of infrared safety is to jet cross sections
in e+e− annihilation, exactly of the type illustrated schematically by Fig.
3 and in experiment in Fig. 5. So long as the resolutions are large, we
can represent the use of asymptotic freedom for jet cross sections by an
appropriate choice of renormalization scale, in this case, the total energy Q,

σ (Q/µ,αs(µ)) = σ (1, αs(Q)) . (12)
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Computed in this fashion, there is no need for a transverse momentum cutoff
of the sort described above. The infrared safety of the observable ensures
that high-pT radiation is suppressed by factors of αs(pT ). Such radiation
is present, of course, but it influences the infrared safe quantity through
calculable corrections, just as the effects of soft gluons influence QED cross
sections in a finite way at higher orders.

2.4. The field-theoretic content of infrared safety

Summarizing, we recount the “sorrows” of QCD perturbation theory,
and how they can be overcome, at least in part. First, there is color con-
finement, which may be interpreted as the statement that matrix elements
like

∫

e−ip·x〈0|T [qa(x) . . .] |0〉 , (13)

in which we take the Fourier transform of a quark or other field with a
nontrivial color representation has no p2 = m2 pole in a Green function, with
T time-ordering (confinement). Second, poles at physical particle masses,
such as p2 = m2

π for pions,

∫

e−iq·x〈0|T [π(x) . . .] |0〉 , (14)

are not accessible to perturbation theory.
Despite all this, we are able to use infrared safety and asymptotic free-

dom for such quantities as the total cross section for e+e− annihilation into
hadrons. What are we really calculating? Totally inclusive examples like
these are related by the optical theorem to forward-scattering amplitudes
of the general form

∫

e−iq·x〈0|T [J(x)J(0)] |0〉 , (15)

involving color singlet currents. Deep-inelastic scattering involves hadronic
matrix elements rather than the ground state,

Tµν =
i

8π

∫

d4x eiq·x < N(p)| T [ Jµ(x)Jν(0) ] |N(p) > , (16)

for electroweak currents, Jµ and nucleon states |N(p)〉. For such matrix
elements, we will apply factorization properties, which will enable us to
isolate the infrared safe factors referred to above.
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Another class of color singlet matrix elements enables us to describe
jet-related cross sections [18]. These look like

lim
R→∞

∫

dx0

∫

dn̂ f(n̂) e−iq·y〈0|J(0)T [n̂iT0i(x0, Rn̂)J(y)] |0〉 , (17)

with T0i the energy momentum tensor, and n̂ a vector on the unit sphere.
Such a matrix element represents the action of a calorimetric detector, which
measures energy flow, and matrix elements such as these are what we really
calculate when we compute jet cross sections. For a general cross section,
we introduce a “weight”, given by function f . As long as all the derivatives,
drf/dn̂r, of the weight are bounded, individual final states may have infrared
divergences, but they cancel in sum over collinear splitting/merging and
soft parton emission, because they respect energy flow. We regularize these
divergences dimensionally (typically) and “pretend” to calculate the long-
distance enhancements in amplitudes, only to cancel them in infrared safe
cross sections. It is this intermediate step that makes the calculations tough,
and is part (not all) of why higher-order calculations are so difficult. It may
be worth noting that one of the goals of a collider experiment is remarkably
similar – to control late stage interactions of particles once they enter the
calorimeters.

3. Extracting Infrared Safety: Factorization

Any cross section with one or two hadrons in the initial state has in-
escapable long-distance behavior, because a semi-inclusive initial state is
simply not a practical option. In effect, we can choose the energy of the
nucleon(s) that initiate our scattering process, and sometimes their spin,
but little else. By construction, then, cross sections at hadronic colliders
are not infrared safe. The technqiue of factorization, however, enables us to
isolate and extract infrared safe dependence in a large set of otherwise long-
distance phenomena. Here we review the physical basis of factorization, and
show how the factorization of a process also leads to useful information on
its energy-dependence.

3.1. Factorization

The general form of a factorized cross section (here multiplied by Q2 to
make it dimensionless), is [19, 20]

Q2σphys(Q,m) = ωSD(Q/µ,αs(µ)) ⊗ fLD(µ,m) + O (1/Qp) , (18)

where as shown on the left, “physical” cross section σ depends generically
on a hard scale Q and on a wealth of soft scales, denoted collectively by



QCD˙lowx˙Sterman printed on April 7, 2008 13

m. The soft scales include in general the gluon mass, which is zero, as well
as various quark masses, and the scale of the perturbative coupling, ΛQCD,
encoded in the running coupling, Eq. (2).

On the right of Eq. (18), we give the schematic factorized form of σ, in
which the Q dependence and m dependence are separated. These is a short-
distance function ωSD, which is infrared safe, and a long-distance function
fLD, which for hadronic initial states is not calculable in perturbation theory.
The short- and long-distance functions are linked by a convolution, denoted
⊗. For deep-inelastic or hadron-hadron scattering the convolution is in
partonic momentum fractions, “x”.

Dimensional analysis requires that we introduce a new scale, µ, the
factorization scale, so that ω and the parton distributions f can be nontrivial
functions of Q and m, respectively. In effect, the factorization scale marks
the boundary between short-distance and long-distance dependence.

As indicated in Eq. (18), factorization is not normally an exact result,
but it often holds up corrections that behave as inverse powers of Q. For
many important examples, such as unpolarized deep-inelastic scattering
cross sections, corrections enter only as 1/Q2, and are negligible for many
purposes once Q reaches several GeV.

In the most familiar examples, the fLD are parton distributions, and
we shall refer to them as such. The parton distributions themselves can be
expressed in terms of expectation values [21] in hadronic states that fix light-
cone components of the momenta of the partons in question. An example
is the distribution of quark q in nucleon N with momentum pµ = p+δµ+,
and spin s,

fq/N (x, µ2) =
1

2

∑

s

∫ ∞

−∞

dy−

2π
e−ixp+y−

< N(p, s) | q̄(0+, y−,0⊥)

×
1

2
γ− Φ(y−, 0) q(0) | N(p, s) > . (19)

We can compare this form to the matrix element for currents, Eq. (16). In
this case, the factorization scale, µ, enters because we must renormalize the
product of quark fields that are separated by a light-like distance y− in the
minus direction. The operator Φ(y−, 0) is a “gauge link”, between the two
fields, whose purpose is to render the matrix element gauge invariant, and
which is defined by

Φ(y−, 0) = P exp

[

−ig

∫ y−

0
dl n · A(lnµ)

]

. (20)

Here the field Aµ =
∑

a Aµ
aTa is given as a matrix in terms of the relevant

generators of SU(3), which for quarks are in fundamental (3 × 3) represen-
tation.
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3.2. From factorization to evolution

If we can factorize a cross section as in Eq. (18), its Q-dependence is
calculable. As such, we can compute it systematically in extensions of the
standard model that include new heavy states, which modify the short-
distance behavior of the theory. “New physics”, then, is embedded in a
calculable fashion in ωSD. While not calculable, the functions fLD “univer-
sal”, portable from one process to another.

The key to the portability of parton distributions, is their “evolution”,
which enables us to compute their dependence on the factorization scale
[22]. Calculable evolution is not a separate assumption, but rather a direct
consequence of the factorization of Eq. (18). We need only observe that the
physical cross section cannot depend on the factorization scale,

0 = µ
d

dµ
ln σphys(Q,m) . (21)

We can thus separate dependence on Q and m by requiring that the µ-
dependence of the short-distance function cancel that of the long-distance
function,

µ
d ln fLD

dµ
= −P (αs(µ)) = −µ

d ln ωSD

dµ
. (22)

The “separation constant” P (αs) can depend only on those variables that
the short- and long-distance functions hold in common: the coupling and
the convolution variables. Eq. (22) is an evolution equation. We can solve
it to relate parton distributions at one µ to another, and therefore (since
we can always choose µ = Q in Eq. (18), we can relate the cross section
at one Q to another, up to corrections associated with the expansion of
ω(1, αs(Q)) in the strong coupling. Of course, this analysis requires that αs

remain small in the range over which we wish to evolve. Schematically, then,
we can exhibit the cross section’s dependence on the momentum transfer as

ln σphys(Q,m) = ln σphys(Q0,m) exp

{

∫ Q

Q0

dµ′

µ′
P
(

αs(µ
′)
)

}

, (23)

precisely of the form of Eq. (4) for the moments of structure functions.

3.3. The pattern of a factorized cross section

A large class of hadronic cross sections can be factorized, as long as
they are defined in a manner consistent with the energy flow interpretation
described in the previous section. This involves, in general, observing a
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jet-like structure in the final state and summing over soft radiation between
the jets. The general structure of any such observable falls into a general
form that can be represented as

dσa+b→Njets
(Q)

dQ
= HIJ ⊗

∏

c=a,b

fc′/c × SJI ×

Njets
∏

i

Ji , (24)

We can think of this expression as recounting a (quantum-mechanical) story:
evolved incoming partons represented by fa′/a, fb′/b collide and exchange
momenta at short distances. A function HIJ describes quantum corrections
at that scale, where J and I identify color exchange in the amplitudes and
their complex conjugates, respectively. These indices are in a color tensor
basis that reflects the numbers and color representations of all incoming and
outgoing particles [23].

In general, different color exchange at short distances influences the
development of the system at long distances. The latter is described by the
a set of outgoing jets, Ji, whose evolution is mutually incoherent. Although
the jets can be defined to have a universal evolution into the final states
(this is a variant factorization) soft interjet radiation, SJI , does depend
on color flow, and hence color exchange. Eq. (24) holds in general to all
powers of the coupling, with power corrections in hard scales. The latter,
however, can be quite complex, involving ratios of the maximum soft energy
to jet energies: Esoft/Ejet, but also inverse powers of the energy of soft
radiation. That is, we anticipate in general “power corrrections” of the
form m/Esoft, with m any of the long-distance mass scales in the theory.
On the perturbative level, the very presence of a factorization involving
soft, jet and short-distance functions ensures more elaborate factorizations,
involving double-logarithmic corrections [24].

A generalization of Eq. (24) applies in hadronic scattering to high-pT

single-particle inclusive cross sections. In this case, the jet functions of Eq.
(24) are replaced by fragmentation functions.

dσA+B→H+X(pT ) =
∑

c

dσ̂A+B→c+X(pT /zµ) ⊗ DH/c(z,mc, µ)

+O(m2
c/p

2
T ) , (25)

with a sum over fragmenting partons c. Here, following the formalism de-
veloped by Collins and Soper [21], the fragmentation function, DH/c can
be defined as a vacuum expectation value similar to those above for the
distributions, but now involving creation and annihilation operators for the
observed hadron. For a gluon to fragment to hadron H, for example, the
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function is

DH/g(z,mc, µ) ∝
1

P+
Trcolor

∫

dy−e−i(P+/z)y−

×〈0|F+λ(0) [Φ
(g)
− (0)]† a†H(P+) aH(P+)Φ

(g)
− (y−)F+

λ (y−)|0〉 . (26)

The relevant ordered exponential, or gauge link, for this process is

Φ
(g)
− (x−) = P exp

[

−ig

∫ ∞

0
n · A(adj) ((x− + λ)n

)

]

, (27)

where nµ is a lightlike vector in the opposite direction to the jet. In this
case, the gauge field A is an 8 × 8 matrix in the adjoint representations of
SU(3) generators. Such a gauge link gives rise to a nice set of diagrammatic
rules, in terms of “eikonal lines” in x− direction (nµ = δµ−), with vertices
−ignµ and (linear) propagators i/(n · k), illustrated in Fig. 7. To the jet,
as it fragments, all that’s left of the rest of the world is a gluon source
moving in the opposite direction, whose entire influence is summarized by
the eikonal line.

Fig. 7. Graphical representation of the ordered exponential, Eq. (27).

3.4. The classical basis of factorization

Where do factorized cross sections like Eq. (24) come from? In the fol-
lowing we review an argument based on the classical Lorentz transformation
properties of fields, and point out the subtleties of gauge fields in particular
[25]. An argument based on a classical picture isn’t far-fetched, precisely
because, as noted above, the correspondence principle is the key to the ori-
gin of infrared divergences. Any accelerated charge must produce classical
radiation, and infinite numbers of soft gluons are required to make a classi-
cal field. Thus the classical field has a lot to tell us about the radiation of
soft partons.

Having said this much, we consider the situation illustrated in Fig. 8, in
which one “bound state”, approaches another (from the left in the figure)
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at a relativistic velocity β → 1 in the x3-direction, carrying with it various
point charges, its “partons”. The coordinates of the bound state on the left
are indicated by unprimed variables, those on the right by primed. We will
refer to the former as the projectile, the latter as the target.

Suppose the partons of our projectile are sources for a massless scalar
field, whose magnitude we denote by φ. In their own rest frames, the sources
produce a simple 1/|~x| potential. By definition, the magnitude of a scalar
field at any point in space-time is independent of the coordinate system in
which it is observed. We can thus start with an expression for our massless
scalar field in the rest frame of the projectile, and simply reexpress it in
terms of the coordinates of the target. To do so we use x3 = γ(βct′ − x′

3) ≡
γ∆′, where as usual γ = (1 − β2)−1/2. This gives

φ(x) =
q

√

x2
T + x2

3

= φ′(x′) =
q

(x2
T + γ2∆′2)1/2

. (28)

Naturally, the field is maximized in the target coordinates at the point of
closest approach, where ∆′ = 0, that is, at t′ = 1

βcx
′
3 . At this point,

the magnitude of the field is simply 1/x′
T . At all other values of the time

t′, however, the field of the oncoming projectile partons is proportional to
an explicit factor of 1/γ. In summary, the scalar field transforms “like a
ruler”, that is, at any fixed ∆′ 6= 0, the field decreases like 1/γ =

√

1 − β2.
This is to say that for any fixed time in the target frame before closest
approach, the field of the projectile decreases rapidly as the velocity of the
projectile approaches the speed of light. This is just a consequence of length
contraction in elementary special relativity. When an “observer” riding on
the projectile (!) measures a distance x3, then an observer sitting on the
target measures a much larger distance.

We now suppose that the sources of the projectile couple to the electro-
magnetic field instead of a scalar field, producing in their own rest frames the
same 1/|~x| potential, but now as the zeroth component of a vector Aµ(x).
The following array compares gauge fields to scalar fields from this point of
view. We compare, on the one hand, the A0 component of the field in the
projectile frame to the A0 component in the target frame, found by Lorentz
transformation, and on the other hand the longitudinal (third) component
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x,y,z,t

q
β 1

x , y , z , t

x     3

Fig. 8. Schematic representation of the field of an oncoming particle.

of the electric field in both frames,

field x frame x′ frame

scalar q
|~x|

q
(x2

T
+γ2∆2)1/2

gauge (−) A0(x) = q
|~x| A′0(x′) = qγβ

(x2
T +γ2∆2)1/2

field strength E3(x) = q
|~x|2 E′

3(x
′) = −qγ∆

(x2
T

+γ2∆2)3/2 .

We can ask the same question of the electromagnetic potential and field
strength that we posed for the scalar field: at a fixed time before the point
of closest approach, how does the field observed by the target depend on
the velocity of the projectile? The answers for the gauge field and the field
strength are strikingly different. The potential is actually independent of
γ as β → 1 for any fixed ∆′ 6= 0! The vector potential (at least its plus
component) is not contracted at all. On the other hand, the field strength,
as represented by E3 decreases as 1/γ2, which is a much more rapid decrease
than even the scalar field.
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These two behaviors are, of course, consistent, and are reconciled by the
realization that the vector field of a relativistic charge approaches a total
derivative in the primed frame as β → 1,

A′ µ(x′) = q
∂

∂x′
µ

ln
(

βct′ − x3
)

+ O(1 − β) . (29)

The large remainder of Aµ is actually an unphysical polarization, and can be
removed by a gauge transformation. In contrast, the “force” field ~E of the
projectile does not overlap the “target” until the moment of the scattering.
“Advanced” effects are corrections to the total derivative:

1 − β ∼
1

2

[

√

1 − β2

]2

∼
m2

2E2
, (30)

where m is the mass of the projectile. This is a power-suppressed effect,
and a typical initial-state correction to factorization.

Factorization expresses this contraction effect. As the oncoming projec-
tile approaches the speed of light, the appearance of its field is essentially
instantaneous at the time of closest approach. The projectile then cannot
affect the internal structure of the target, or vice-versa, and their internal
structures are thus effectively universal among all projectiles, so long as
they are sufficiently relativistic. The initial state structure of the target
and projectile can then by summarized by multiplicative factors, and these
are the parton distributions of Eq. (24).

This argument, of course, applies only to “initial-state” interactions.
For final-state processes to respect factorizations like Eq. (24), it is also
necessary that we define the observable in a manner consistent with in-
frared safety. In addition, for factorization to hold, we must require that
there be a hard scattering. Otherwise there is no well-defined time at which
the scattering occurs, and indeed no sharp distinction between the initial
state and the final state. If there is a well-defined hard scattering, however,
low-momentum transfers after that scattering are too late to affect large
momentum transfer processes, such as the creation of jets or of heavy par-
ticles. Similarly, the fragmentation of partons into jets of hadrons is too
late to know details of the hard scattering, leading to the factorization of
fragmentation functions.

3.5. Factorization in perturbation theory

Perturbative arguments for factorization are, of course, much more com-
plex than the simple classical pictures above. Nevertheless, the physical
observations we have just made have a direct correlation in perturbation
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theory, which is worth pointing out. We consider a soft gluon, of momen-
tum k emitted by fast quark, whose momentum is p. In perturbation theory,
this will be associated with a factor like

ū(p) (−igs γµ )
p/ + k/ + m

(p + k)2 − m2
= ū(p) (−igs )

pµ

p · k
+ (IR finite) ,

(31)

where in the second form we have used the Dirac equation, and have sup-
pressed terms proportional to k, which are infrared finite. In an arbitrary
perturbative diagram, the vector pµ on the right-hand side will be con-
tracted with the propagator of the soft gluon that carries momentum k.
Now suppose we were to choose a gauge in which p · A = 0, in which case
the gluon propagator is given (with p2 = 0) by

Gνµ(k) = −

(

gνµ −
pν kµ + kν pµ

p · k

)

. (32)

In this gauge, the soft gluons decouple from the quark. This argument can
easily be generalized beyond lowest order, and applies to the entire set of
collinear partons, whether quark, antiquark or gluon, in that jet. No gauge
choice like this, of course, can decouple soft gluons from more than one jet
at a time. But the existence of such a gauge for each jet implies that soft
gluon couplings cannot resolve more than the direction and overall color of
a jet [20]. This is the origin of the “universality” of soft gluon interactions,
and their summary in terms of eikonal lines like those of Eq. (27) and Fig.
7, which play a central role in factorization for perturbative QCD.

4. Conclusion

We have summarized a few of the major results of perturbative QCD,
which underly the basic applications of the theory to hadron-hadron and
hadron-lepton collisions at large momentum transfer. We have presented
justifications wherever they can be found, in both classical and quantum
intuition.

The coming decade will see unprecedented applications of the ideas and
methods of perturbative QCD at the Large Hadron Collider, in proton-
proton and proton-nucleus experiments. Whether as a pesky background
to new physics searches, or as a subject of interest in its own right, QCD,
with its self-generated scales and evolving degrees of freedom, will remain
a benchmark for our understanding of physics at its most challenging.
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